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LATTICE THEORY OF FACE-SHEAR AND THICKNESS-TWIST
WAVES IN B.C.C. CRYSTAL PLATES

CHUNG GONG

Department of Civil Engineering, Columbia University, New York, N.Y.

Abstract—An analytical study is made of face-shear and thickness-twist waves propagating along the [100] and
{110] directions of a b.c.c. lattice plate bounded by a pair of (001) surfaces. The behavior of the waves in the
[110] direction is similar to that found previously for analogous waves in the [100] direction of simple-cubic and
f.c.c. plates. In the [100] direction of the b.c.c. plate, the situation is quite different. Near the halfway point of the
first Brillouin zone, the lowest symmetric mode and the lowest antisymmetric mode are predominantly surface
modes and the remaining modes group together in a narrow, high frequency band-pass. The results of numerical
computations are exhibited for iron and tungsten.

INTRODUCTION

FACE-SHEAR and thickness-twist waves in lattice plates have been previously investigated
by Mindlin [1] and by Brady [2]. Mindlin examined simple cubic lattices and showed that
the character of face-shear and thickness-twist modes in such lattices differed from that
exhibited in continuum plates, the essential difference being two-fold: first, the number of
modes for each value of the wave-length was equal to the number of layers in the case of a
lattice plate, whereas it is infinite in the case of a continuum plate ; and, second, the lattice
plate exhibited the usual character associated with a periodic structure; namely, the
existence of Brillouin zones and a dispersion associated with the lattice constant in addition
to that associated with the finite thickness of the plate.

Brady [2] investigated waves along the [100] direction of a f.c.c. lattice plate His results
did not show any striking differences from those of Mindlin [1]. The overall character of the
dispersion curves obtained by Brady were almost indistinguishable from those of the simple
cubic lattice. The only difference appeared in the variation of displacements across the
thickness. Brady’s results were influenced by the inclusion of interactions between particles
lying on next-nearest layers. As a result, the variation of the displacements across the
thickness was not sinusoidal as in the case of the simple cubic lattice examined by Mindlin,
where only nearest-layer interactions were included. There was an additional component
of displacement which was confined near the bounding surfaces of the plate. However, the
amplitude of this surface component was small and did not influence appreciably the overall
pattern of displacements.

In this paper, we have considered face-shear and thickness-twist waves propagating
along the [100] and [110] directions of a b.c.c. crystal lattice plate bounded by two (001)
surfaces. We have used the four-constant lattice model of Clark et al. [3]. This model
includes nearest and next-nearest neighbor central-force interactions and two angular-
stiffness interactions. These interactions involve up to sixth order difference operators in
the equations of motion. The corresponding force constants were chosen so that the long
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wave approximation and one point in the dispersion relation at the first Brillouin boundary
match experimental results.

Our results for waves along the [110] direction are very similar to those for waves along
the [100] direction of an f.c.c. lattice plate [2]. This is not surprising, because the geometric
arrangement of the particles of a b.c.c. lattice viewed from a [110] direction resembles that of
an f.c.c. lattice, the only difference being one of a distortion of scale in one direction.

However, the results for waves along the [100] direction are strikingly different. First,
for most materials, all but two of the dispersion curves appear to coalesce at the halfway
point of the first Brillouin zone. And, second, the lowest two branches have strong surface
components which become predominant at short wave lengths but which survive even at
moderately long wave lengths in the lowest symmetric branch. The possibility of existence
of surface waves of other than the Rayleigh type has been mentioned previously by
Feuchtwang [4] and confirmed by the computations of Allen et al. [5], who found some non-
Rayleigh surface modes near the first Brillouin zone boundary on (111) surfaces of f.c.c.
lattices. Here we report the existence of two non-Rayleigh surface modes of pure shear on
(001) surfaces of b.c.c. lattices and give a detailed investigation of the displacements
associated with them.

The coalescing of the higher modes halfway into the Brillouin zone is a direct con-
sequence of the band structure corresponding to the (010) plane of the Brillouin zone. For
most materials, the band-width of transverse shear waves is very small at this halfway point.
In the framework of the lattice model used, this band-width diminishes to zero as the
angular-stiffness force constant tends to zero. In that case the elastic constants satisfy the
Cauchy relation which, for cubic crystals, is simply C,, = C,,. We have examined two
materials one of which, iron, almost satisfies the Cauchy relation. The other material,
tungsten, is very nearly isotropic; i.e. its elastic constants almost satisfy the condition
C,1—C,5—2C,4 = 0. There is very little qualitative difference between the results for these
two materials other than that in the case of iron the coalescing of the dispersion branches
for waves in the {100] direction is more pronounced.

BASIC EQUATIONS

We use the equations of motion for a monatomic b.c.c. lattice given by Clark et al. [3].
These equations, repeated here for ease of reference, include up to sixth order difference
operators and are the following
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and P, Py, P,; are the point sets defined as follows:

P&, =(1L1L,1;1,1,-1;1, -1, 1;1, -1, =1;
-LL1;-1L1,-1; =1, =1L1; =1, —1,—1),
Py(&,n,0) = (2,0,0; ~2,0,0),
Py5(&m,0) = (0,2,0,0, -2,0),
P3¢, 1,8 =(0,0,2;0,0, —2), &)
P,y(&n,0) =(0,2,0;0, —2,0;0,0,2;0,0, —2),
P& n0) =(0,0,2;0,0, —2;2,0,0; —2,0,0),
P,3(& 0 =(2,0,0; —2,0,0;0,2,0;0, —2,0).

In equations (1) M is the mass of an atom, dots denote differentiation with respect to time;
ub™" are the rectangular components of displacement of the atom at point I, m, n; o and
are nearest and next nearest neighbor central force constants, respectively; and y; and y,
are angular force constants.

The boundary conditions are obtained by considering the bounded lattice domain as
part of an infinite domain. The displacements near the boundary are then constrained to be
such as to make the forces acting on the particles in the domain of interest from the
fictitious extension equal to zero. Our domain of interest is a plate with 2N +1 layers.
Only the particles in layers n = + N and n = +(N —1), numbered from the center layer,
are affected by the boundary conditions. These conditions are analogous to those given
by Gazis and Wallis [6), the essential difference being that here we consider values of y,
different from zero.

For the layers n = + N, we have the conditions
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Ri(S,m) =(1,0; - 1,0),
Ry(&m) =(0,1;0, -1),
Ry m) = RuE, MORAE 1)
=(1,0; —-1,0;0,1;0, —1),
Ry =(,1;,-11;1, -1, -1, =1).

For the layers n = +(N — 1), we have the conditions
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where
R n=(-,L-5L1,-1;-L1;L1) (7N

The relation between the force constants and the elastic constants of the corresponding
continuum resulting from long wave approximation has been obtained in {3] and is given by

aC“ = a+ﬁ+6'yl+3'))2,
aCyp = a—3y, “%’}’2, ()
aCyq = a+7y,+37;.

Here, 2a = h is the atomic distance between the next nearest neighbors, while in [3] a was
taken equal to h.

In order to determine uniquely the four lattice force constants, another relationship is
needed. This relation may be derived by matching some critical frequency obtained by
direct calculation from the equations of motion with that obtained experimentally. Setting

Y2 = 47V, %

we find that the dispersion relations for the [110] direction are independent of g, whereas
for the [100] direction, both the longitudinal and the transverse branches are functions of g.
These two branches, for the direction [100], intersect at the end of the first Brillouin zone
according to both the theoretical derivation and experimental results. The parameter ¢
is used to match this intersection point of the dispersion curves. If wg(n) denotes the experi-
mental value of frequency at the intersection point, we find

2
2[(5c44—cu)-M ‘;’;(“)]
q = 2 (10
M
3[ ‘jj”’-—-(clﬁsc“)]

Note that the limiting velocities of propagation of the longitudinal and the transverse
waves at w = 0, §, = 0 are independent of g, hence they are not affected by the above
equation. Note also that theoretically [from equations (1)] as well as experimentally it can
be shown that wg(n) is a relative extremal but not necessarily the maximum.

FACE-SHEAR AND THICKNESS-TWIST WAVES IN THE [100] DIRECTION
The displacement field for the thickness-twist waves in the [100] direction has the form
e = i = 0,
us™" = Bexpli(0,1+0;n—wt)], (1)
0<86, <m, 0 <Ref; <=
Upon substituting this displacement field into the equations of motion (1), we obtain
2(—2y; +3y,)(cos? 8, +cos? 83)+ 8(a+ 2y, + 3y,)cos 8, cos 0
+Mw?—4Qua+2y,+9y,) = 0, (12)



756 CHUNG GoNG

where 0, and 0, are dimensionless wave numbers in the directions [100] and [001] respec-
tively. Equation (12} is a quadratic equation in cos 65 as well as cos 0,. For a fixed wave
number 8, in the [100] direction we find two roots for cos 65 or #5. Using the relations (8)
we may solve for cos 6, from (12) and obtain

cos 3y
cosfz, (2—39)(C;—Cy4)

{[3(2"' D(C12—Cya) =22+ 39)(Cy5+ Cyy)] cos 0,

2 M 2 2 ¥
+| (4=99)Ci2— Coa)(om—7) | o, (13)
where
M 1 12(2+439)C,, 2
T w2 = —-32 0 .
p (7% 8C44{2_3q|: Cr—Cut 32+¢g)|cos* 6, +1 (14)
Thus the displacement field in a plate reduces to the form
ull,m,n — u13,m,n = 0,
2 .
us™" = 3 (By, €08 O3n+ By sin O3,n) €711 90, (15)
k=1

The eigenfrequencies of the lattice plate, and the corresponding 85, are to be determined by
using the boundary conditions. However, certain statements concerning these frequencies
can be made by recalling Rayleigh’s theorem [7] on the effect of relaxation of spring
constants. The argument goes as follows:

In an infinite domain all frequencies of propagating modes lie within a ““passing band”’.
For any value of 8, the passing band is such that at least one of the §;, is real. Introduction
of a free boundary amounts to a reduction of elastic (spring) constants. By Rayleigh’s
theorem it lowers all frequencies, and may produce an eigenfrequency below the passing
band. Such a frequency would correspond to a surface mode. It will be seen that the intro-
duction of two free surfaces causes as many as two surface modes to appear. Most of the
modes, however, lie within the passing band. Therefore, it is instructive to investigate the
shape of this band as 0, varies between 0 and 7. Equation (12) may be written in the form

Mo? 2-3q

= 8C44_m(clz - C44)(C0$2 01 +C052 03)

2
—ﬁip(z“’ 3g)(C124+ Cay) =32+ g)(C 5~ Cag)] cos 0, cos 0. (16)

Partial differentiation with respect to 65 yields

o a
005 wMQ2+3q)

+[2(2+39)(C12+ Caa) = 3(2+g)(C1;— Cau)) cOs 0, }. (17)

sin 03{(2—3g)(C 1, —C44)cos O3

The relative extreme values of o for w # 0 are at

93 = 0’ T, (18)
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and also at

[22+3g)(Cy24+ Cag)—3(24+9)(Cy,— Cay)l cos 6,
(2—39)(C1,—Ca)

6, = arc cos {— } = 0;3,, (192)

provided that

(2=39)(C12—Cya4)
22+ 39)(C12+ Caa) =32+ q)(C12—Cus)|

lcos 8, < \ (19b)

Otherwise one finds that for real 8, the relative minimum frequency is at §; = 0, and the
relative maximum frequency at 6; = zn. Thus for

2—-3q)(C12,—Cya)
lcos 8, > ‘ ( , (20)
"7 202439)(Cr2+ Cas) =32 +9)(Cro— Cad)
we find, for 0 < 0, < n/2
Col‘l’lll’l a
O = |:M(2+3 :| {4243g)(C12+ Cua)—(10+9g)(Cy, — Cy4)
—(2—3g)(C12— Cyq) c0s® 0,
F 2[2(2439)(C12+ Cya) =32+ g)(Cy2— Cyq)] cos 0, }2. 2D
Furthermore, assuming C,, < C,, we find that
Omax a0d 0(0) = @, for 0 < lgl < %,
(03) = , ’ (22)
DpninaNd O(T) = Oy, for 2 < |gl.
For instance at 6, = #/2, cos f, = 0 and equations (19) are satisfied, hence we find
4
03 = 03, = 5,
( ) _2 M“) , 23)
w(n) = w(0)

_}a (2=39)(C12—Cid) | 1?
"{M[gc‘“_ 2+3q }} '

The width of the passing band, (W — Omin), at ; = 7/2, for example, with C,, < C,, and
lql < %,is

Dmax =~ Dmin = w(%) - a)(O)

2aC44 2 3q C12 %
“2( {1_[ 82+ 34)| Cas 1” } 24
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In the case

2-3q (C12

~12_ 1) «1
82+3q)| Caa )« ;

Wmax ™ Omin = 2aC44 ! 2- 3‘] {g‘l—z*"l .
M 8(2+3g)\ Cas

In the cases ¢ = % and y, = y, = C,,—C,, = 0, equation (12) degenerates to a linear
equation in cos 8, hence there is only one wave number in the direction of the thickness
of the plate for each w. In that case the width of the passing band at #, = =/2 reduces to
zero.

Let us now investigate the nature of the wave numbers 8, for values of @ outside of the
passing band. In that case, either cos #5, are real but with absolute value greater than 1,
or cos 15, are complex conjugate. The latter case obtains when

(25)

M
(4-9¢%)(C,,— Cu)';(wi —0?) < 0. (26)
Let
2 M 2
Dy(6:) = (4=9¢7)(C12~ Cas) 7. @

Then, by using the value w? obtained from equation (14) we find
D,(8;) = 8C44(2+3g) {[(2+3g)(C 12+ Cya) —HC,— Cay)) cos® 6,
+(2-39)(C12—Cas)}- (28)
Hence, D,(8,) >0, for 0 <0, <= if Cyy < C,, and |g| < % ie. cosBy, are real for
0 < w? < wi.And D,(8,) < 0for
(2-39)(Cy2—Cya) ¥
(2439)(C12+ Caa)—HC 12— Cua)

lcos 8, < (29)

if C44 < C,, and lgl > %. In this case, the cos 83, become complex for 0 < w? < w2.

The variation of w vs. 85, for several values of 8, is shown in Figs. 1-3 for gl < % and
Figs. 4-6 for |¢l > 2.

For an infinite lattice plate with a finite number of atoms across the thickness, the
number of fundamental mode shapes of vibration is finite and is equal to the number of
atomic layers across the thickness. In other words, for each value of 8, there is only a finite
number of frequencies, and corresponding 8,,, which satisfy the traction-free boundary
conditions on both faces of a lattice plate with a finite thickness. If the number of layers
across the thickness is odd, the lattice coordinate numbers, I, m, n, in the equations (1), (2),
(4), (6), (11), (15) are integers (including zero), whereas if the number of layers across the
thickness is even, then the numbers I, m, n must be odd multiples of (1/2), i.e. +4(2p+1),
where p is an integer. This difference in [, m, n has no effect on the equations of motion and
consequently equation (12) remains unchanged. Nevertheless the boundary conditions will
be changed since, when the number of layers is odd, the geometric configuration is symmetric
about the middle plane while, when the number of layers is even, the geometric configuration
is no longer symmetric about the fictitious middle plane. However, the dispersion curves
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[100]
6 =0
2 / 8,:0
lal< 3 w(9;=1r)
/ - ReB,
_8e30c,
6, Arccos [l (2.3q)(c‘2-c“)]
¥
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W, (6,20) = 4 [M(g_:;q)(c,z-cw)] “4

v
: ] 32+ 2
“’(Z‘a:?,) 2w [Z(Crz'caa)“ W(C,Q—C“)]

F1G.1. The variation of w vs. 65, for SH-waves along the {100] direction, with 8, = 0 and lg| < %.

I 8,

F1G. 2. The variation of w vs. 13, for SH-waves along the [100] direction, with 8, = n/4 and l4] < 2.
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FiG. 3. The variation of w vs. 8;, for SH-waves along the [100] direction, with 8, = n/2 and
lql < %.
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FiG. 4. The variation of w vs. 03, for SH-waves along the [100] direction, with #, = 0 and |g| > 2.
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8,:0.3
w(§:93)
(323
Re 6,

I O,
FiG. 5. The variation of w vs. 8,, for SH-waves along the [100] direction, with 8, = 0-3n and
gl > 2.
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F1G. 6. The variation of w vs. 03, for SH-waves along the [100] direction, with 6, = n/2 and Iq| > 2.
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of the spectrum for either an even or odd number of layers approach the same limit as the
number of layers of the lattice plate increases.

In the present paper we limit our discussion to the plate of odd number of atomic layers.
The boundary conditions for the faces n = + N and n = +(N —1) are obtained by sub-
stituting the displacement field (15} into equations (4) and (6). We thus obtain the system of
linear homogeneous equations:

Fi, Fio -Gy —Gug:
Foiy Fa —Gy —Gyy §
Fiy Fi, Gy Gi,
Fyy Fas Gay Gy,

=0, (30)

where

ij = f.‘fk COS 831‘1\7 ""f;k Sin g:;,kN,
. 1
G = fix 5in BN+ 008 B3N, j, k = 1,2; (31)

and
Ju= 2(2+3 ){(2 3q)(C12— Cya)sin® 6, +sin® 03,)
+[42+39)(C1 2+ Caa) = T2+ g)(C 1, — Cya)](1 —cos 0, cos O3,)}

asin 85,
2(2+3q)

+[42+39)(C12+ Caa) =52+ g)NCy5— Caa)l cos 84}, (32)

f’ik:

{(2—3g)(C 12— Caas) cos 03,

ka (2+q)(C12—C44)(COS 03k (e 01),

2(2+3 )
4aq

S = 2(2+3)(Cu Caa) 5in By,

For a non-trivial solution of By, the coefficient determinant of equations (30) must vanish,
viz.

ZFn Fiz =Gy =Gy,
F21 F22 “"GZI ‘Gzz

Fu Fu  Gu  Gu|~ 0 G3)
F21 F22 GZI GZZ
or equivalently
Fyi Fiafj Gy Gy,
‘Fu Fy, =0, or G2 Gy =0 G4
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Note that the coefficient matrix F corresponds to B,;, the symmetric modes, while G
corresponds to B,,, the antisymmetric modes.

The amplitude ratio of the pair of mode shapes across the thickness is:
for symmetric modes,

Bl 1 H 12
= o (35)
BIZ Hl 1

and, for antisymmetric modes,
B H
= (36)
B22 H21

where

Hy; = (2+g)(cos 0, —cos 05;) cos 03, N —4q sin 05, sin 03, N,
(37)

H,, = (2+4g)(cos 8, —cos 04,) sin 83, N + 44 sin 05, cos 65, N.

FACE-SHEAR AND THICKNESS-TWIST WAVES IN THE [110] DIRECTION

Viewed along the [110] direction the geometric configuration of a b.c.c. crystal lattice is
quite similar to that of a f.c.c. crystal lattice, Fig. 7, or an orthorhombic F crystal lattice with
a = b = ¢,/2. Hence we may expect that the pattern of the dispersion curves for waves
propagating in the [110] direction in a b.c.c. crystal lattice is similar to that of the dispersion
curves for waves propagating in the [100] direction in a f.c.c. crystal lattice. This is indeed
the case as will be seen in the sequel.

The displacement field for SH-waves in the [110] direction assumes the form:

W™t = (= 1Y Lexp{il0(+m)+0:n—wt]}, U™ =0,

(38)
0<Rel,<nm j=12.

[110]

F1G. 7. A distorted f.c.c. lattice is formed in the b.c.c. lattice.
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Upon substituting this displacement field into the equations of motion (1), we find
M? = 2[6(2y; +7,) cos 85+ (2B + 6y, + 3y,)] sin? §
+8{a+2y, + 3y,){1 ~cos 03) 39
+2(—2y,+3y,) sin? 6,.

We observe that this equation is a function of sin 6, and therefore the dispersion curves are
symmetric about 8 = =n/2, where 8 is the nondimensional wave number and 8 = n/2 is
the end of the first Brillouin zone. Applying the relations (8), and solving equation {39) for
cos 85, we obtain

Cos 631 1 2 2(2+3q)(C12+C44)
= 0—
COS 032 2—3q{3(2+q)cos CIZ_C44
+[ 4942 M( , Z)T} (40)
| — —(wi-w ,
Ci2—Chq a
where
Mw? 1 {9(2+¢)? . a
? = -C 0
a 2-3q{ 273 (C127 Cagsin
+4[6(2+ g)Caq+(2—3g)(Cyy — C )] sin* 6
16(2+ 3q)Ci4}
e ER 41)
Ci2—Caa

Again, we first investigate the variation of the passing band with 6. Equations (38) may be
written in the form:

2
U™t = (— 1P Y (A4 008 On+ Ay sin Bg,n) 0™ 70 glmn —
k=1
x (42)
0<Refy<m, 0<6<Z, j=12

For a fixed value of 8, 05, are determined by the number of atomic layers and the
boundary conditions of the lattice plate. Equation (39) can be written in the form

Mo 1

T 2+43g
- 3(2 + q)(cl 2 C44) COS 93} Sinz 9
+2[2Q2+3g)(C12+Csa) — 32+ @)(Cy; — Cya) (1 —cos 83)
+(2~3g)(Cy,—Cas)sin? 05 }. 43)

Differentiating this equation with respect to 8, we obtain,

{2[(2+39)(2C;1 —C12=Cua) +HC 12— Cyss)

dw  asinb,
90, oMQ2+3q)

+{202+3g)(C12+Caa) =32+ g)(C12—Cas)l
+(2—3g)(Cy3— Cys)cos O3} {44)

{3(2+ Q)(Clz - C44) Sin2 é
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The relative extreme values of w for w # 0 are at

0,=0, = (45)
and
0. = arc COS{3(2+‘1)(C12—C44) cos? 0—2(2+34)(C12+C44)} =0, (46)
3 (2-39)(C12—Ca4) "
A real value of 05, between 0 and = exists if C44 < C,,, and also if
224+3q)(Cy,+Cas) 2-3q 2 22+3g)(C12+Caa)  2-3q
— < cos’ 0 < + , 47
30+4)(Cra—Cap) 32+9) 2+9)(CiaCo) T30+
when |gl < %,0or -2 < g < —%;and if
22+3g)(C1,+Cay) | 2—3q 2 22+3q)(C12+Cha) 2-3q
+ < cos? < - , 48
32+9)(Cra=Cas)  30+9) 0+9Cia—Cad) 30+gy D

when g > %, or ¢ < —2. Since, for the time being, we are interested in real 0, ie.
0 < cos? 6 < 1, the condition of equation (47) is satisfied if

Ci2 S 32+9)
Cas 2-3q
and the condition of equation (48) is satisfied if 2 < 0 i.e. equation (48) will never be satisfied.

In addition, for most materials, equation (49) is also not satisfied. Hence the relative
maximum is usually at #; = n and the minimum at 8, = 0, and they are given by

(49)

Dpmax MQ2+3q)
F32+9)(C12—Cay)]sin® 6
+AFD[22+39)(C 12+ Caa) =32 +g)(Ci2— Cag)l}t (50)
At 6 = 0, the width of the passing band is simply

. %
Omin _ [____2,“_] {l(24+39)(2C11 — C12—Caa)+HC 32— Cus)

1 _ 4
Oun 0= 0 = 2 ) | 20t €U
At0 = n2
n n a\*
Dmax 5) = Win (E) = 2(;) [(C11+C12+2C4)F —(Cy, —Cyp)t] (52)

Just as in the [100] direction, the dispersion relation equation (39) or (43) reduces to a linear
equation in cos 8, if either g = % or y; = y, = 0. In these cases there is only one wave
number in the direction of the thickness of the plate. Nevertheless, the width of the passing
band does not reduce to zero in either case. Instead, the dispersion relation, equation (43),
reduces to the form:

for g = %,

2
(Cy,—C,,)sin? oM@
i1 2
4a

cosf; =1

T 362 7(Cra—Can)sinZ &’ (53)
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and fory, =y, =0,

Me?

1(c11_ s

cosf; = 1+-[— 1) sin? 0 —

2 C12 aclz.

Both of these equations give a finite width of the passing band.
We also observe that the central force, next-nearest neighbor interaction has no effect
on the SH-waves in the [100] direction, but it does in the [110] direction.
When the values of cos 03, obtained from equation (40) are real, the corresponding
65, are real if [cos 03] < 1 and complex or imaginary if [cos 05,] > 1. Furthermore, if
4-94> M

=4 Mo, 2
CrasCu a(w"' w?) <0, (55)

cos 05, and cos 05, are complex conjugate. Let

4-942 Mw?
D,(0) = ——— . 56
() CoCas a (56)
From equation (41), we have
D,(0) = Psin*0+2Q sin> 6+R, (57)
where
P =9(2+9),
2(2+3q)
0 = 22139 1604 1oy +2=39)(Chy— C2) (58)
Ci2—Cyus
C12 - C44 .

We note that in equation (57) P and R are positive definite for all real values of g. Certainly
Q is positive for gl < %, and C44 < C,,. In the case |gl > % and C,y < Cy, < Cyq, Q is
positive for almost all known materials. Therefore, D,(6) > 0 for 0 < 8 < n/2 and equation
(57) is positive definite. Thus we conclude that cos 03, in equations (40), will be real in the
interval, 0 < @ < n/2 and w? < w2 iflgl < %.

The variation of w vs. 05 is shown in Figs. 8 and 9. We should like to point out that,
when the wave number in the propagation direction equals zero, i.e. in the case of thickness
modes, the dispersion relations and the boundary conditions are identical in the [100] and
[110] directions. In fact, the shear wave with wave normal in the [001] direction, and
displacement vector in either [010] or [110] direction has the same dispersion relation,
namely,

Mw? 1 .
Y m"] (2—39)(C12—Ca4)sin’ 0,

+2[22439)(C 1, + Cag) =32+ g)N(C; 2 — C4a))(1 —cos 03)} . (59

The common boundary conditions for §; = 0 or # = 0 can be obtained by setting 6, = 0
in equations (30).
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w(8=0)}

8:=0
:-2)

3 o ReB,

/

8(2+3q)C ]
i bt K™ Y S0
Im B, A"c"s[' -390y Cy )

a(2+3q) Y2
:[ %

wylf=0) =4 { M(Z-3qHC 5 Cag)

1/2
(e 0) =2 [E 200 Cu- g (©2Cud]

FiG. 8. The variation of w vs. 8, for SH-waves along the [110] direction, with 8 = 0.

We now substitute equations (42) into the boundary conditions, equations (4) and (6),
and obtain the system of linear homogeneous equations in Aj:
2

Z (ijAlki'ijAZk) =0 (60)
k=1
where Fj;, and G, were defined in equation (31), and
Jue= (2+3 ){3(2+4)(C12 Cua)(142cos fy,)sin* 0
—(2-3g)(C1;— Ca4)sin? Oy,
—[42439)(Cy2+ Caa) = T2+ g)(Cyz — Cag) (1 —cos 83,)},
, asiné

S = S (€12 = Caa) (2 ~34) cos 02— 62+ g) cos” 6] (61)

+42+439)(Cy2+ Caa)+(2+9)(Cr2— Caa)}s

fa= 2(2+3 )(2+4)(C12"C44)(1 cos 6,),
daq

2% = 2(2+3q)(c12 Caq) sin O34,
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Re 8

FIG. 9. The variation of w vs. §, for SH-waves along the [110] direction, with 0 < 8 < /2.

The condition for a non-trivial solution for 4, yields

[Fil = 0 for symmetric modes, (62a)
and
|Gl =0 for antisymmetric modes. (62b)

The amplitude ratio of the two displacement fields associated with the two 85, is

A H
= 12 for symmetric modes, (63a)
A 12 H 11
and
A H . .
21— 22 for antisymmetric modes, (63b)
Az Hy,
where

Hi, = 2+q)(1—cos 03;) cos 05N —44q sin 05, sin 03, N,
Hj, = (24 g)(1 —cos 03;,) sin 85, N 4+ 44 sin 05, cos 65, N.

NUMERICAL EXAMPLES AND DISCUSSION

There are several differences in the mathematical equations corresponding to waves
along the [100] and [110] directions. For waves along the [100] direction only fourth order
differences survive in the equations of motion (1). For waves along the [110] direction we get
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sixth order differences but of a rather special nature. In both cases the boundary conditions
are satisfied, at discrete frequencies, by a superposition of two displacement fields which
satisfy the equations of motion at the same frequency. In the [100] direction, the central
force interaction between the next nearest neighboring atoms has no influence at all, and in
the [110] direction, the effect of this interaction appears only in the equations of motion,
L.e. it shows in equation (39). The boundary conditions for both directions are quite similar.
The essential differences in dispersion characters arise through equations of motion which
yield a substantially different character of dispersion curves and passing bands, as was
shown in the preceding section. The frequency equations are transcendental equations
which are not easily amenable to analytic investigation. We have therefore carried out
numerical computations to obtain the dispersion curves for the plate. We first recall that in
the case of an elastic continuum of cubic symmetry, as well as the simple cubic crystal
lattice, the relation between the normalized frequency and the wave number for face-shear
and thickness-twist waves propagating in a transaction-free plate is independent of the
elastic constants of the medium [1]. However, in a b.c.c. crystal lattice plate, this relation does
depend on the elastic constants: for waves in either the [100] or [110] direction. Therefore,
in order to illustrate the changing character of the dispersion relations in different directions,
and for different elastic constants, we have considered two different substances. Among
the various crystals with reliable experimental data, we have selected iron and tungsten,
not only because they are widely used in industry, but also because iron is a crystal strongly
deviating from isotropy, whereas tungsten is a crystal very close to isotropy {i.e. for tungsten,
Ci1 = C2+2C40)

Some of the experimental data for iron and tungsten are listed in the following table:

TasLe 1
Iron at 300°K Tungsten at 295K
Name Units
Data Reference Data Reference

c,, 102 dyn-cm 2 2331 [8] 5233825 1
Cy; 10'2 dyn-cm ™2 13544 (8] 2.046075 1]
Cia 10'? dyn-cm™* 1-1783 8] 1-607625 n
2a A 2-8606 93 3.1650 91
M 1023 g 92744 9] 30.548875 (9]
hoyg(n) meV 354 [10}

vi{m) 10'2¢fs 5.50 [12]

Note that the mass, M, calculated for each case is inaccurate, because we cannot obtain the
lattice constant, 24, and the mass density, p, at the same temperature from [9]. However,
we use only the ratio of these variables in the present computations. From the given data in
the table and using equation (10), we compute the value of q. For iron

g = 0-53221, (65a)
and for tungsten
g = —0:06982. (65b)
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Note that
h(Planck’s constant) = 6-6255 x 1027 ergs-sec,
h .
h = — = 105456 x 10?7 ergs-sec,
2n
leV = 16019 x 10~ 12 ergs,

1-6019 x 10715

wg(n) = W[hwz(“)]

= 1-52 x 10*2 rad-sec ™ [hwy(n)],

(66)

wgn) = 2nvg(n) rad-sec™ .
Just as in the case of a simple cubic crystal lattice plate [1], we also choose the frequency
of the first {antisymmetric) thickness-shear (i.e. #, = 0, or § = 0) mode as the reference
frequency:

2n [aCu4\* n Cia\?
w, = [aCas)* _ (Ces) (67)
IN+vI\ M a@N+1)\ p
thus the normalized frequency is
w
Q= o (68)

In this paper we restrict our discussion to the real branches of the dispersion curves;
i.e. in the Q — 8, {or Q— §) relation, only real 8, (or real ) has been considered.

The dispersion curves for real wave-number with face-shear and thickness-twist waves
propagating in the [100] and [110] directions of a b.c.c. crystal lattice plate 15 atomic layers
thick are shown in Figs. 10 and 12, for iron, and in Figs. 11 and 13 for tungsten. In these
figures one may see that the pattern of the dispersion curves in a plate is strongly influenced
by the shape of the passing band found in the unbounded lattice. In particular, for SH-waves
in the [100] direction, the real branches are squeezed closely together at 8, = #/2, for iron
as well as tungsten. From equation {24), we find the passing band at 8, = /2

S
w(f) ~(0) = 0.00104814(8“C44) ,for iron, (69)
2 M
3
w(%) —o(0) = 0.02125976(80(:“) , for tungsten. (70)

For waves propagating in the [110] direction, 0 = x/2 is the boundary of the first Brillouin
zone, and the dispersion curves for propagating waves must be terminated at that point.
In the [100] direction, the first Brillouin zone is ended at 8; = =, however, the dispersion
curves for the lattice plate with an odd number of atomic layers across the thickness are
symmetric about §, = /2, even though the dispersion relation, equation {12), for the
unbounded b.c.c. crystal lattice is asymmetric. It may be shown that the dispersion curves
for a plate with an even number of atomic layers across the thickness are not symmetric
aboiuit 8, = n/2. Rather, the dispersion curves of the symmetric and antisymmetic modes
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Fic. 10. Real branches of the dispersion relation for face-shear and thickness-twist waves along the
[100] direction in a plate 15 atomic layers thick (iron).

are mirror images of each other across the line 8, = n/2. In our present computations,
because of the symmetry, we give only the portion, from 8; = 0 to 8, = n/2, of the real
branches of the dispersion curves for the plate with fifteen atomic layers, in Figs. 10 and 11.
As we have already noted, in either the [100] or [110] direction, the characteristic values of
85, are functions of the wave number in the direction of propagation. Consequently, the
mode shapes of the thickness-shear vibrations (6, = 0, or § = 0) cannot be maintained
invariant along each branch as the wavelength diminishes from the infinity. This is in
contrast with the case of the continuum theory as well as the simple cubic crystal lattice
theory [1], where the mode shapes of the thickness-shear do not vary as the value of the
wave number of the thickness-twist waves propagating in a principal direction changes.
In the [100] direction, the spectrum of the real branches has three regions which are
distinguished by the characters of 8;,, i.e. in the first region one of the 85,(f,, for iron and
tungsten) is imaginary and the other is complex (for iron and tungsten the real part of this
wave number is always equal to 7). The second region has one of 85, (65, in our examples)
real and the other complex (with real part equal to #), and the third region has both 6, real.
The first region contains only two branches, i.e. the first branch of the symmetric modes and
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FiG. 11. Real branches of the dispersion relation for face-shear and thickness-twist waves along the
{100} direction in a plate 15 atomic layers thick (tungsten).

a part of the first branch of the antisymmetric modes. As 8, — 0, both branches approach
bulk modes analogous to the extensional and flexural modes of a continuum plate. The
same two branches nearly merge into one as 8, approaches 7/2. The mode shape of the
first symmetric branch then consists of two kinds of surface-like modes, i.e.

B .
w3y = By 1[cosh n, 1((,)+—B—1—3(-«- 1)*cosh n032(0,] il —on (71)
11

where 8;,, designates the imaginary part of 6,; of the first symmetric branch. The first
term in equation (71) is a monotonic decay surface-like mode, and the second term is an
alternating decay surface-like mode. The ratio B,,/B;, is very small when @, is small,
when also 0310y is quite small as compared to 6;3,,. As 8; and the frequency increase,
6310, approaches 8,4, and the ratio B,,/B, approaches (—1)". At 8, = n/2, we find
0310y = 0320y and By,/B;; = (— 1)¥, and equation (71) reduces to

T e
ug;';,';(e, = 5) = By, [1+(—1)" "] cosh ny o /2", (72)
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Fi1G. 12. Real branches of the dispersion relation for face-shear and thickness-twist waves along the
[110] direction in a plate 15 atomic layers thick (iron).

It is seen that at 6, = =/2, the amplitude of the motion of the atoms is zero if they are on the
layer with N+ n odd, and doubled if N +n even.

The first antisymmetric mode branch starts, at 8, = 0, as a bulk mode. At the point of
inflection of the dispersion curve the character of this mode changes into that of a surface-
like mode. As in the case of the lower symmetric mode, the antisymmetric surface-like mode
is a superposition of two displacement fields, one monotonic and one of alternating sign,
both decreasing exponentially in magnitude away from the surfaces of the plate.

The existence of a surface mode, associated with shear displacements only, is of particular
interest. This mode differs from previous structural surface modes in lattices which were of
the Rayleigh or generalized-Rayleigh type and involved coupled longitudinal and shear
waves [13]. In the present case, the displacements are linearly polarized in a direction normal
to the direction of propagation and parallel to the free surfaces. It may be pointed out that
the possibility of existence of surface modes other than of the Rayleigh type has been
suggested by Feuchtwang [4), and confirmed previously by Allen et al. [5].
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F1G. 13. Real branches of the dispersion relation for face-shear and thickness-twist waves along the
[110] direction in a plate 15 atomic layers thick (tungsten).

All modes in the second region are essentially bulk modes. The mode shapes across the
thickness of the plate are dominated by the sinusoidal contribution associated with the real
#5,, but in the vicinity of the plate surfaces the mode shapes are influenced by the surface
component associated with the complex 6,,. As an example we have computed the
amplitude ratio and the 85, for each branch at certain fixed values of 8, for tungsten (see
Table 6).

Among the fifteen branches, except for the first one which has zero curvature at Q = 0,
we find that the first seven branches have positive curvatures at the cut-off frequencies (i.e.
at 8, = 0), therefore, along each of them the velocity of energy propagation {or group
velocity) is positive if 0 < 8, < 6,, where 0 < 6, < n/2 is the boundary of the second
region for each branch. The remaining seven branches have negative curvatures at 8; = 0,
and along each of them the group velocity is negative for 0 < 0, < 0,. Besides the evident
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TABLE 2. THE DISPERSION RELATION (2 vS. 8, /1) FOR FACE-SHEAR AND THICKNESS-TWIST WAVES IN THE[ 100] DIRECTION
IN A PLATE 15 ATOMIC LAYERS THICK (IRON)

6,/n
Mode
0 0-10 0-20 030 0-40 0-50
0 00 1.438962 2-790347 3.877147 4.565716 4-803458
1 0998219 1-696123 2-845076 3.878797 4.565717 4-803458
2 1985754 2.388893 3.304413 4.449235 5-645150 6745646
3 2951927 3-203403 3851178 4-736409 5.749205 6-746628
4 3.886114 4044567 4480411 5-120748 5908868 6745746
5 4.777843 4.871494 5-139529 5-55713S 6-108782 6746994
6 5-616957 5661716 5794199 6-014180 6-333434 6-748048
7 6-393822 6-399906 6-420979 6-468239 6-568577 6749623
8 7099550 7074276 7-002955 6901108 6-801748 6-748733
9 7-726210 7675304 7-527420 7-298693 7-022396 6750523
10 8.266996 8195270 7984660 7650128 7221868 6751041
11 8.716323 8-628046 8367288 7947155 7-393301 6752022
12 9069855 8-968959 8-669831 8-183676 7-531472 6751870
13 9:324434 9214645 8-888417 8-355385 7-632620 ¥
14 9477965 9-362885 9020510 8-459460 7-694248 t

+ The values of Q are very close to 6-752.

mathematical reasons, we would like to give a physical explanation for the existence
of both positive and negative group velocities along the real branches: in the equilibrium
position, the atoms on every next layer of the b.c.c. crystal lattice are displaced by a vector
distance v = a(+e; 1e,). In the [100] direction, the positions of atoms between adjacent
layers, therefore, have a spatial phase difference a, which for waves propagating in the
[100] direction, marks the phase difference between adjacent layers. Accordingly, across the

TABLE 3. THE DISPERSION RELATION (€2 VS. 8, /%) FOR FACE-SHEAR AND THICKNESS-TWIST WAVES IN THE [ 100] DIRECTION
IN A PLATE 15 ATOMIC LAYERS THICK (TUNGSTEN)

g,/n
Mode
00 010 0-20 0-30 0-40 0-50

0 00 1-440397 2-790270 3-880329 4.571981 4-810910
1 0997803 1-700074 2-840055 3-882888 4.571984 4810910
2 1982474 2:390800 3.305687 4.423425 5-574129 6-615712*
3 2941121 3.199355 3.854433 4725380 5-696075 6634993
4 3.861358 4028147 4478689 5-118902 5-877011 ¥

5 4731593 4-835024 5-124273 5-555558 6-094373 6-636368
6 5-541340 5-597121 5756280 6-002359 6-327559 6-662770
7 6281495 6-299620 6-351745 6-435525 6-559657 6:693505
8 6944571 6-932130 6-895209 6-838082 6-777811 6665430
9 7-524824 7-487336 7-376283 7198322 6-973053 6697364
10 8-018261 7-960363 7-788255 7-508638 7-139867 6721206
11 8422503 8-348329 8127158 7-764567 7-275566 6740820
12 8-736529 8-649912 8-391033 7963935 7379550 6725854
13 8960277 8-864874 8.579270 8-106076 7-452499 6745419
14 9094188 8-993553 8-691989 8191122 7-495586 6-750226

+ The value of Q at this point is very close to that at *.



776 CHUNG GONG

TABLE 4. THE DISPERSION RELATION (Q VS. §/7) FOR FACE-SHEAR AND THICKNESS-TWIST WAVES IN THE [ 110] DIRECTION
IN A PLATE |5 ATOMIC LAYERS THICK (IRON)

/n
Mode
0-0 0-10 0-20 0-30 0-40 0-50
0 0-0 1.355689 2.577383 3.545539 4-166423 4.380240
1 0998219 1-695689 2-790561 3.720943 4.328629 4-539096
2 1.985754 2-417193 3.288797 4.118574 4.683329 4.881779
3 2.951927 3.262788 3962990 4-686346 5-198557 5-381374
4 3-886114 4132428 4-716980 5-352359 5-816041 5983721
5 4.777843 4985494 5-492266 6-060711 6-484452 6639221
6 4616957 5-799719 6-253102 6-771965 7-164484 7-308894
7 6-393822 6-559796 6975765 7-458153 7-826846 7-963206
8 7-099550 7-253858 7-643194 8098779 8-449523 8-579739
9 7-726210 7-872269 8-242471 8-678391 9-015738 9-141329
10 8-266996 8-407179 8763616 9-185184 9512642 9-634798
11 8-716323 8-852345 9-198961 9-610195 9-930477 10-050129
12 9069855 9-202994 9-542780 9946780 10-262014 10-379902
13 9-324434 9455689 9790993 10-190231 10-502131 10-618851
14 9-477965 9-608153 9940921 10-337455 10-647459 10-763514

thickness of the plate, there are two groups of atoms, and in each of these groups the atoms
have the same spatial phase in the [100] direction. Upon drawing an analogy to the one
dimensional diatomic lattice with identical masses but different force constant [14], we find
that when the mass centers of the two groups of atoms move accordantly during the wave
motion, we have motion analogous to the acoustic mode. The optical modes correspond to
the wave motions during which the mass centers of the two groups of atoms move oppositely.
In Figs. 14 and 15, we give the typical mode shapes across the thickness of the plate of
tungsten at 8, = 0 and 6, = 0-2z respectively. Note that Fig. 14 is also valid for the [110]
direction, because, as we have shown, the thickness-shear modes in both [100] and [110]

TABLE 5. THE DISPERSION RELATION () VS. 6/7) FOR FACE-SHEAR AND THICKNESS-TWIST WAVES IN THE [ 1 10] DIRECTION
IN A PLATE 15 ATOMIC LAYERS THICK (TUNGSTEN)

B/n
Mode
00 0-10 0-20 0-30 0-40 0-50
0 0-0 2099259 3.987579 5-481865 6-439754 6-769624
1 0997803 2-348783 4-159579 5-638243 6-592686 6-921984
2 1-982474 2917705 4.528365 5-941907 6-874242 7-198156
3 2941121 3-650194 5056608 6-380576 7-277304 7-591808
4 3-861358 4438977 5-680714 6-915379 7-772602 8076125
5 4731593 5.227666 6-346488 7-503902 8:324202 8-617099
6 5-541340 5-984336 7-013831 8-109196 8-898153 9-181813
7 6-281495 6-688823 7-654060 8.701723 9-465663 9-741836
8 6-944571 7-327461 8:246758 9258829 10-003669 10-274078
9 7-524824 7-890816 8-777500 9763653 10-494427 10-760585
10 8-018261 8-372564 9:236341 10-204055 10-924807 11-187949
11 8-422503 8-768799 9-616758 10-571694 11-285547 11-546631
12 8.736529 9.077469 9914819 10-861209 11570504 11-830246
13 8-960277 9-297825 10-128457 11069469 11775937 12:034859

14 9-094188 9-429866 10-256798 11-194868 11-899810 12-158295
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TABLE 6. THE AMPLITUDE RATIOS By,/By;(B,,/B,, FOR SYMMETRIC MODES, B,/B,, FOR ANTISYMMETRIC MODES)
AND THE WAVE NUMBERS 83, (IN RAD.) IN THE [001] DIRECTION (NORMAL TO THE PLANE OF THE PLATE) FOR FACE-SHEAR
AND THICKNESS-TWIST WAVES PROPAGATING ALONG THE [100] DIRECTION IN A PLATE 15 ATOMIC LAYERS THICK

(TUNGSTEN)
8,/n =00 0,/n = 0-20
Mode
03, 03— Bi1/Bi2(10'%) 05, 03,—n B,1/Bi»(10'?)
0 0.0 3-861183i 0 0-212333i 3-617520i — 1960762
1 0-209458 3.817204i 292453674 0-165223i 3-617039i —3.271763
2 0419025 3-814355i —73-370691 0-351249 3.613013i 8-030406
3 0-628788 3.809722i —32.833467 0-585794 3.607292i 15-416054
4 0-838797 3.803479i 18-688476 0-807149 3.599569i 29-036831
5 1-049053 3.795868i 12:193903 1024108 3.590130i 6074632
6 1259505 3.787196i — 8729651 1.239113 3.579345i —3-123137
7 1.470050 3.771825i — 6719141 1.453069 3.567654i —2-031152
8 1.680542 3.768162i 5-513671 1666320 3.555558i 1-501076
9 1-890809 3.758641i 4819783 1.878962 3-543598i 1.220308
10 2-100678 3-749696i —4.513168 2-090980 3-532324i —1-083220
11 2:310000 3.741743i —4.585881 2-302322 3.522268i —1-057280
12 2:518690 3.735150i 5-186265 2:512964 3-513907i 1.160570
13 2:726755 3.730218i 6-900399 2:722948 3.507640i 1.512451
14 2934315 3.727170i —12-829519 2:932414 3.503759i —2777613

directions are identical. We note that all modes above the seventh tend to have a displace-
ment variation across the thickness characteristic of an optical mode.

In a graph of small scale, we cannot see the influence of the surface components of the
displacement. In order to show the effect of this surface component on the sinusoidal
modes, we have tabulated the normalized displacements through the thickness for both
0, = 0 and 6, = 0-2%. As the numerical results (for tungsten, for example) show that the
surface components of the displacements hardly have any influence on the layers with
0 < n < 3, we give only the total normalized displacements for these layers in Tables 7
and 9. In Tables 8 and 10, we give the normalized displacements both with and without the
contribution of the surface component of the displacement, for 4 < n < 7. In Tables 9 and
10, the surface-like modes are also included. For most materials the third region of the
spectrum is very small. The size of the region is directly related to the width of the passing
band in the vicinity of §, = =n/2. In Fig. 10 or 11, this region is so small that the intricate
behavior of the branches is not visible ; hence in Fig. 16 we have drawn an enlarged detail of
the third region for tungsten. In this region both 6;, are real and they correspond to two
superimposed sinusoidal modes through the thickness of the plate, for each value of 4, .
As 0, approaches n/2, more branches enter the third region. In the second region the mode
shapes through the thickness of the plate are dominated by the mode shapes for a single,
real 05 (in the present examples it is 65,).

In the third region, where both 05, are real, the fluctuation of the amplitude ratios,
(By1/Byy), is of the order + 10%3 for tungsten. Instead of being monotonic, as in the second
region, the branches are wavy and the group of branches of symmetric modes intersects
with that of the antisymmetric modes. Thus at a certain frequency and a certain wave number
f#,, there may simultaneously exist one symmetric and one antisymmetric mode in the plate.
The fluctuation of the amplitude ratios (B,,/B,,) is closely related to the curvature and slope
along each branch: B, /B,,(k = 1 or 2) attains a maximum at the point where the group
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F1G. 14. Mode shapes and normalized frequencies of thickness-shear vibrations in either the [010]

direction (i.e. face-shear and thickness-twist waves along the [100] direction with 8, = 0) or the [110]

direction (i.e. face-shear and thickness-twist waves along the [110] direction with 6 = 0) of a plate

15 atomic layers thick (tungsten). Note that in a (010) plane of the plate, the atoms of adjacent layers

are not in phase along the [100] direction in the equilibrium position. In this figure, however, we have

eliminated the phase difference for convenience and have used “white circle” and “‘black circle” to
indicate the difference.
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F1G. 15. Mode shapes and normalized frequencies of face-shear and thickness-twist waves along the
{100] direction with #; = +0-2x in a plate 15 atomic layers thick (tungsten). Note that in a (010)
plane of the plate, the atoms of adjacent layers are not in phase along the [100] direction in the
equilibrium position. In this figure, however, we have eliminated the phase difference for con-
venience and have used “‘white circle” and “black circle” to indicate the difference.
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TABLE 7. THE NORMALIZED DISPLACEMENTS OF THE LAYERS WITH
0 < » < 3, (UPON WHICH THE SURFACE COMPONENTS OF THE DIS-
PLACEMENTS HAVE NEGLIGIBLE INFLUENCE} FOR THE THICKNESS-
SHEAR VIBRATIONS IN EITHER THE[010] DIRECTION {1.€. FACE-SHEAR AND
THICKNESS-TWIST WAVES ALONG THE [100] DIRECTION WITH 8§, = 0)
OR THE [ 1T0] DIRECTION (i.e. FACE-SHEAR AND THICKNESS-TWIST WAVES
ALONG THE [ 110] DIRECTION WITH § == 0) IN A PLATE 15 ATOMIC LAYERS
THICK (TUNGSTEN)

Layer n
Mode
0 1 2 3
0 1.00 1.00 1.00 1.00
1 0-00 020792997 0-40677078 0-58783060
2 1-00 091348616 0-66891394 0-30860110
3 0-00 0-58816460 095134594 095062081
4 1-00 0-66835847 -~ (- 10659390 - (-81084435
5 0-00 0-86695170 0-86416386 - 0-00556673
6 1-00 030628791 - 0-81237544 - (-80392945
7 0-00 099492936 0-20013232 — 095467228
8 1-00 - 0-10952502 --0-97600854 0-32331971
9 0-00 0-94923143 - 0-59721579 ~0-57348881
10 1.00 —0-50543099 - (0-48907903 099982239
11 0-00 073900558 - (-99573509 060264651
12 100 - 0-81218819 0-31929932 0-29352591
13 0-00 0-40304154 ~0-73771247 094724034
14 1-00 - {-97859483 091529569 —(-81281242

velocity is a maximum, and a minimum at minimum group velocity. The ratio B,,/B,,
equals unity at the point of zero group velocity. The sign of the amplitude ratio depends on
the curvature of the branch as well as the number of layers of the plate, and the order of the
branch. At 0, = n/2, we find

BII BZI + 1
= (_ i)Ns = (_' I)N ’ {73)
BlZ BZZ

and 65, +60;, = . Thus, from equation (15), we obtain
uy™" = [14-(— DV*"(By, cos 85 n+ B, sin O5,n) et/ 1, (74)

The pattern of the branches shown in Fig. 16 implies the existence of two systems of bound-
ing curves which intersect one another in the third region. Through every other intersection
point there passes one branch of a symmetric mode and one branch of an antisymmetric
mode. It is instructive to recall the case of extensional and flexural waves in a continuum
plate where analogous bounds have been found by Mindlin [15] to be branches of the
dispersion curves of a plate with mixed boundary conditions.

Since the width of the passing band is fixed for fixed material constants, and for every
value of #,, an increase of the number of atomic layers across the thickness of the plate
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TABLE 8. THE NORMALIZED DISPLACEMENTS OF THE LAYERS WITH 4 < n < 7, (4) WITH AND (B8) WITHOUT THE

CONTRIBUTION OF THE SURFACE COMPONENT OF THE DISPLACEMENT. THE THICKNESS-SHEAR VIBRATIONS ARE IN EITHER

THE [010] DIRECTION (i.c. FACE-SHEAR AND THICKNESS-TWIST WAVES ALONG THE [100] DIRECTION WITH &, = 0)

OR THE [110] DIRECTION (i.e. FACE-SHEAR AND THICKNESS-TWIST WAVES ALONG THE [110] DIRECTION WITH § = 0}
IN A PLATE 15 ATOMIC LAYERS THICK (TUNGSTEN)

Layer n
Mode
4 5 6 7

0 100 1-00 100 1-00
i A 0-74319484 0-86607178 0-95110628 099384778
B 0-74319483 0-86607211 095190115 0-99453556
2 A —0-10510830 —0-50062969 —0-80958998 —-097567190
B —0-10510827 —0-50063100 —0-80953027 —0-97835922
3 A 058626651 —0-00234203 —0-59018818 —094625229
B 0-58626658 —0-00234489 —0-59005939 —095206584
4 A — 097727537 —0-49550120 0-31515508 090670111
B — 097727548 —0-49549634 0-31493712 091647813
S A —0-86971252 —0-86135640 001145241 0-85823978
B —0-86971268 —0.86134924 0-01113328 0-87244671
6 A 0-31990748 0-99990676 0-29218194 —0-80197847
B 0-31990770 0-99989717 0-29260512 —0-82065435
7 A —0-39216711 0-87579892 0-56781367 —0-73874194
B —0-39216684 087578703 0-56833341 —0-76146546
8 A 090518567 —0-52161440 —0-79033102 0-66897301
B 0-90518535 - 0-52160060 —0-79092872 0-69485356
9 A 095803076 —0:02927799 — 093897365 0-59273375
B 0-95803041 —0-02926293 —093961942 0-62043127
10 A —0-52160376 —0-47253797 0-99863599 —0-50980648
B —0-52160340 —0-47255334 0-99928960 —0-53759052
11 A 0-18372969 —0-85018955 096122050 —0-41990654
B 0-18373003 —0-85020409 096183378 —0-44576941
12 A —0-79609559 099962100 —0-82716382 0-32300126
B —0-79609589 099963344 —0-82768507 0-34483865
i3 A — 099608134 0-87594173 —0-60684646 0-21963903
B — 099608156 0-87595086 —0-60722680 0-23549484
14 A 067553227 —0-50932775 0-32112721 —0-11121937
B 0-67553239 —0-50933258 0-32132807 —0-11956740

simply increases the number of branches within the fixed passing band. Concomitantly,
the normalized frequency at cut-off (8; = 0) of the lowest branch of the antisymmetric
modes approaches unity from below and the cut-off frequencies of first few immediately
higher branches are nearly integer numbers. For the branches of the higher modes, however,
the deviation from equal spacing of cut-off frequencies is appreciable.

In the [110] direction, the real branches of the dispersion spectrum, though heavily
material-dependent (cf. the spectra for iron and tungsten, for example), are quite similar
to those for the simple cubic crystal lattice {1]. Along each real branch the mode shapes
of the plate, varying slightly with the wave number 8 in the direction of propagation,
consist of a superposition of one sinusoidal component due to the real 85, (85, in the present
examples) and one surface component due to the complex 8, with real part equal to .
The influence of the surface component is insignificant. The amplitude ratios Ay ,/Ay,
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TABLE 9. THE NORMALIZED DISPLACEMENTS OF THE LAYERS WITH

0 < n < 3, (UPON WHICH THE SURFACE COMPONENTS OF THE DIS-

PLACEMENTS HAVE NEGLIGIBLE INFLUENCE) FOR THE FACE-SHEAR AND

THICKNESS-TWIST WAVES PROPAGATING IN THE [ 100] DIRECTION, WITH
@, = 027 IN A PLATE 15 ATOMIC LAYERS THICK (TUNGSTEN)

Layer n
Mode
0 1 2 3
0 1-00 1-02262752 109153410 1.20983801
1 0.00 0-1659761 0-33649353 0-51621771
2 1-00 0-93894379 0-76323089 0-49431802
3 0-00 0-55286093 092136877 0-98264350
4 1-00 0-69156050 —-0-04348814 —0-75170987
5 0-00 0-85425075 0-88818363 0-06921365
6 1-00 0-32563466 —0-78792414 —0-83878546
7 0-00 0-99307817 0-23328466 —0-93827710
8 1.00 —009537839 —0-98180592 0-28266451
9 0-00 0-95289151 —0:57804559 —0-60223598
10 1-00 —0-49703931 —0-50590384 0-99994753
11 0-00 0-74415584 —0-99420121 0-58410901
12 1.00 —0-80883477 0-30842738 0-30990118
13 0-00 0-40652233 —0-74283081 0-95083880
14 1-00 —097820186 091375777 —0-80947724
6.9 r T
Detail of the Q-6,/r relation [100] for
(1121304 TUNGSTEN (in the vicinity of 8,=7/2)
68 ——'0—
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F1G. 16. Enlarged detail of the real branches in the passing band near 6, = n/2 of the dispersion
relation for thickness-twist waves along the [100] direction in a plate 15 atomic layers thick
(tungsten).
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TABLE 10. THE NORMALIZED DISPLACEMENTS OF THE LAYERS WITH 4 < n < 7,
(A) WITH AND (B) WITHOUT THE CONTRIBUTION OF THE SURFACE COMPONENT OF THE
DISPLACEMENT. THE FACE-SHEAR AND THICKNESS-TWIST WAVES ARE PROPAGATING
IN THE [100] DIRECTION WITH §; = 0-27 IN A PLATE 15 ATOMIC LAYERS THICK

(TUNGSTEN)
Layer n
Mode
4 5 6 7

0 1-38289281 1-61854968 192673550 2-34887917
1 0-71006577 092335342 1.16147563 1-44735537
2 A 0-16504291 —0-18439058 —0-51113760 —0-78177462
B 0-16504279 —0-18438621 —0-51129937 —~0-77577654

3 A 0-71625295 0-21102346 —0-36448726 —0-82159838
B 0-71625289 021102566 —0-36456869 —0-81859654

4 A —0-99621753 —0-62618070 0-13017672 0-80466280
B —0.99621756 —0-62617957 0-13013544 0-80617264

5 A —0-81622050 —091786167 —0-13790893 0-76752007
B —0-81622064 —0-91785653 —0-13809535 077427571

6 A 0-24164864 099617347 040678225 —0-71883336
B 0-24164891 099616399 0-40712213 —0-73101784

7 A — 045369636 0-83171283 0-64858377 —0-66196248
B —0-45369597 0-83169908 0-64907097 — 067922538

8 A 092788625 —0-45968254 —0-83958844 0-59847660
B 0-92788575 — 045966503 —0-84020153 061993917

9 A 094337616 0-02994267 — 096084986 0-52905581
B 094337557 0-02996296 —096155178 055333614

10 A —0-48812323 —0-51496366 0-99905101 —0-45387716
B —0-48812260 —0-51471526 099979004 —0-47915465

11 A 0-21382391 —0-86976010 094750077 —0-37290634
B 0-21382453 —0-86978115 0-94821361 —0-39704369

12 A —0-80974456 0-99998041 —0-80730487 0-28621358
B —0-80974511 0-99999880 —0-80792250 0-30695232

13 A —0:99461913 0-86659758 —0-58846691 0-19428656
B —0:99461954 0-86661126 —0-58892335 0-20951759

14 A 0-66990631 —0-50112309 0-31026401 —0-09827506
B 0-66990653 —0-50113039 0-31050683 —0-10634633

(k = 1 or 2) are of the order 10'> for tungsten, and 10?* for iron. It can be shown that the
influence of the surface component diminishes as the magnitude of (C,, —C,,), which
corresponds to the force constant y, of angular interaction, decreases. In order to show the
influence of the surface component and the difference between the mode shapes in the [100]
direction and those in the [110] direction, we have plotted the mode shapes of the latter
for 6 = 0-2n, in Fig. 17, and tabulated the normalized displacements in Tables 11 and 12,
both with and without the contribution of the surface component.

The similarity between the propagations of face-shear and thickness-twist waves in a
b.c.c. crystal lattice plate in the [110] direction and in a simple cubic or fc.c. plate in the
[100] direction is not an unexpected coincidence. This similarity, as well as the difference
between the propagations of the face-shear and thickness-twist waves in a b.c.c. crystal
lattice plate in the [100] direction and in the [110] direction can be accounted for as follows.
Consider a crystal lattice plate: the normal to the plane of the plate is in the x;-direction,
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F1G. 17. Mode shapes and normalized frequencies of face-shear and thickness-twist waves along the
[110] direction with 8 = 0-2z in a plate 15 atomic layers thick (tungsten).

the wave-normal of the face-shear and thickness-twist waves is in the x,-direction, the dis-
placement vector is parallel to the x,-direction. As the waves propagate in the plate, we
observe that the motion of the atoms in each atomic layer is independent of the position of
the atoms in the x,-direction. Therefore, the wave motion in such a plate is essentially
equivalent to the wave motion in a plane lattice strip which is actually the projection of the
plate in an x; — x5 plane.

We have already shown that the geometrical configuration of a b.c.c. crystal lattice
viewed from the [110] direction is similar to that of an fc.c. crystal lattice, and that the
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TABLE 11, THE NORMALIZED DISPLACEMENTS OF THE LAYERS WITH

0 < n < 3, (UPON WHICH THE SURFACE COMPONENTS OF THE DIS-

PLACEMENTS HAVE NEGLIGIBLE INFLUENCE) FOR THE FACE-SHEAR AND

THICKNESS-TWIST WAVES PROPAGATING IN THE [110] DIRECTION, WITH
# = 0-2n 1IN A PLATE 15 ATOMIC LAYERS THICK {TUNGSTEN)

Layer n
Mode
0 | 2 3
0 100 099423130 097699176 0-94848027
1 0-00 0-25992856 0-51098851 0-70953961
2 100 0-89998606 061994981 0-21590631
3 0-00 0-60588017 0-96402311 0-92798841
4 1-00 0-65599353 —0-13934497 —0-83881233
5 0-00 0-87331922 0-85087208 (04431733
6 1-00 029637110 ~0-82432834 ~0-78498529
7 0-00 099574782 (-18345859 —0-96194703
8 100 —0-11645118 ~(-97287824 034303683
9 0-00 094742530 ~0-60630868 —0-55941560
10 1-00 —0-50937378 ~0-48107671 0-99946951
11 0-00 0-73659899 —0-99636762 0-61114714
12 1.00 —0-81371640 0-32426877 0-28599076
13 0-00 0-40145935 -0-73537464 0-94556586
14 1-00 -~ 097877106 0-91598559 ~0-81430931

propagation of the face-shear and thickness-twist waves in a b.c.c. crystal lattice along the
[110] direction is almost identical with that in an f.c.c. crystal lattice along the [100] direction.
Now, according to the above observation which reduces the wave-motion to that in a lattice
strip, we find that the projected plane lattice strip of an f.c.c. crystal lattice plate is identical
with that of a simple cubic crystal lattice. Thus we may expect that the thickness-twist wave
motions for both plates along the [100] direction will be similar. Consequently, the
dispersion spectra of face-shear and thickness-twist waves in the simple cubic crystal lattice
plate and the f.c.c. crystal lattice plate in the [100] direction and in the b.c.c. crystal lattice
plate in the [110] direction are all alike, except for the existence of a small contribution by
the surface component of displacements in the f.c.c. as well as the b.c.c. crystal lattice plates.
The surface components are due to the long interlayer interactions considered in this paper
as well as in Ref., [2].

The atoms in a plane projection of a b.c.c. crystal lattice along the [010] direction form a
centered square lattice. For waves propagating in the x-direction the atoms in adjacent
layers have a spatial phase difference along the x,-direction which separates the atoms in
alternating atomic layers into two groups. For each vibrational mode across the thickness
of the strip, we may regard the mass centers of the two groups of atoms as two distinct
mass points in a one dimensional diatomic lattice. Thus the mode will correspond to an
acoustical mode if the neighboring particles are in phase, and an optical mode if the
neighboring particles move in opposite directions. This situation provides a physical
explanation for the substantial difference in the character of the dispersion curves for waves
along the [100] and [110] directions, in the b.c.c. lattice.
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TABLE 12. THE NORMALIZED DISPLACEMENTS OF THE LAYERS WITH 4 < n < 7,
(A) WITH AND (B) WITHOUT THE CONTRIBUTION OF THE SURFACE COMPONENT OF THE
DISPLACEMENT. THE FACE-SHEAR AND THICKNESS-TWIST WAVES ARE PROPAGATING
IN THE [110] DIRECTION WITH 6 = 0-27 IN A PLATE 15 ATOMIC LAYERS THICK

(TUNGSTEN)
Layer n
Mode
4 5 6 7

0 A 0-90902579 0-85908329 0-79923999 072964611
B 090902578 0-85908351 0-79922964 0-73015474

1 A 0-86831392 0-96739596 1-00000647 096233012
B 0-86831391 096739658 0-99997624 096381325

2 A —0-23132450 —0-63228246 —0-90684004 - 099639475
B —0-23132447 —0-63228391 —0-90676893 —0:99987488

3 A 0-51251017 —0-11252458 —0-69168747 —0-98129672
B 0-51251023 —0-11252732 —0-69155378 —0-98781208

4 A —0-96116587 —0-42222937 0-40742563 094614305
B —0-96116596 —0-42222497 0-40721226 095648219

S A —0-89405017 —0-82675928 0-08885091 0-89842851
B —0-89405030 —0-82675298 0-08854757 091302458

6 A 0-35903426 099780843 0-23200848 —0-84117294
B 0-35903444 099780015 0-23240382 —0-86004460

7 A —0-36068987 0-89550299 052519700 —0-77592084
B —0-36068965 0-89549285 0-52567706 —0-79864105

8 A 0-89298440 —0-55102663 —0-76410383 070341464
B 0-89298415 —0-55101496 —0-76465146 0-72910410

9 A 096430923 — 005771050 —0:92679688 062383287
B 0-96430896 —0-05769785 —0-92738499 0-65118165

10 A -0-53713068 —0-45225637 099728610 —0:53699047
B —0-53713040 — 045226921 099787856 —0-56431713

11 A 0-16969338 —0-84067276 096691283 —0-44260607
B 0-16969365 —0-84068486 096746671 —0-46796817

12 A —0-78969930 099918184 —0-83594909 0-34065499
B —0-78969953 099919215 —0-83641856 0-36202286

13 A — 099666894 0-88007891 —0-61509060 0-23174270
B —0-99666911 0-88008646 —0-61543250 0-24723430

14 A 0-67805911 —0-51301614 0-32601897 —0-11737970
B 0-67805920 -0-51302013 0-32619932 -0-12552878
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AGcTpakT—/laeTcst aHAIMTUYECKOE MCCENOBAHWE BOJIH CABHUra IPAHU M CABMIa IO TOJILIMHE, KOTOPbiE
PaCnpoCTPaHstoOTCA BOOJABL  HanpasneHuit [100] u [110] mnnacTunku ¢ 06BEMHOLEHTPHPOBAHHOH
KyOuueckoii pelieTKoi u orpaHnyeHHoN napoit mosepxxocreii (001). [ToBeaeHHe 3TX BOJIH IJIS HaNIpaB/IeHus
[110] noao6Ho Takomy e, HAHOEHHOMY paHee a1 MoA0OHBIX BOJIH, HanpaBAeHHbIX No [100] ans nnacTuHok
¢ mpocToif Kybuyeckoil M rpaHeueHTpUpoBaHHOH peuieTkoit. CoBeplIeHHO pa3Has CHTyalus BAONb
HanpagJseHnus [100] naacTUHKHM ¢ 06bEMHOLIEHTPpHPOBAHHON KyOuueckoil pelueTkoii. B6in3u ToukH Nexaluei
Ha TMOJNyTH TnepBoi 30HbI - BpuiitodHa, caMblif  HM3KMH CHMMETpPHYECKMH ¥ caMbli  HU3KHH
AHTUCHMMETPHYECKHIT BUJ konebanuit oka3biBaroTcs npeobianaroluuMu BUAAMHU KOleGaHuil IOBEPXHOCTH.
OcTanbHble BUABI KOJIEOAHUM IPYNNUPYIOTCS BMECTE B Y3KOM, MPOMYCKAIOWEH M0A0Ce BBICOKOH YacTOThI.
[NpuBoasTCcA pe3yibTaThl YUCIEHHBIX PAcYeTOB AJIA XKeae3a U Bosibdhpama,



